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FOREWORD

There is an increasing interest within the Navy and DoD in the study of
prime numbers for applications in disciplines such as artificial intelligence
and encription. This report describes a contribution to prime number theory.
It involves the formation of a special diagonal array whose columns and rows can
be generated by either of two sets of quadratic equations. The analysis of this
array gives a clear picture of how and why there is a definite structure in the

way prime numbers occur in the cardinal number system.

The analysis on which this report is based was done on the employee's own

time and its publication was charged to overhead funds because of the relevance
of the subject 'to the Navy.

Approved by:

R. DIXON, Head
Materials Division
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INTRODUCTION

A 1964 Scientific American article I described Stanislaw Ulam's discovery
in 1963 of the non-random distribution of prime numbers in a special array. The
array consisted of a square spiral made up of the integers which started at the
center of a rectangular grid. The primes tended to be aligned along straight
lines, particularly diagonals. The article mentioned that various other types

of arrays (not specifically described) also showed similar behavior.

This paper describes one such array which, to the author's knowledge, has
not been reported before. It is built up of successive diagonals, each of which
starts at the leftmost column and consists of the odd integers only (see
Table 1). Each column and row can be represented by an equation of the form
I=x 2-x+c and I=x 2+x-r respectively. The array can be built up in several
ways such as directly by filling in successive diagonals (e.g., for the first I,
for the second 3,5, the third 7,9,11, etc.) or by substitution in each equation

*or by addition in each equation as follows: Calculate the first two integers in
a column from an equation, then the third integer 13=12-11+12+2 or 13=12+6+2
where 6=12-I I. In general, In+l=In+6 +2 , where 6=I In-l and n+l, n and n-i
indicate positions in the array. The first method can be faster but either of

the other two has the advantage that it permits one to put the triangular array

into rectangular form.

An initial array was built up of 75 columns by 40 rows. The limit of 40
rows was chosen because the best known prime-rich equation, x 2-x+41 (due to

Euler) has 40 primes in succession for x=1,2,3 ....... ,40. This is not evident
in the original array of 75x40. Only 22 columns (but 40 rows) are shown in
Table 1. A second partial table with 40 rows but only 11 columns does show
these first 40 primes (Table 2). It is obvious that if one wishes to find other

prime-rich equations and compare them to x 2-x+41, one must substitute those
values of x that include 1,2,3 ...... up to xI (the first value of x for each
equation) in Table 1. Except for the first column (and first row) values of
x<xl are increasingly excluded as c and r increase in value in Table 1.

One of the main advantages of using Table I was that in studying it, a

correlation was found between prime-rich equations and certain characteristics
they possess. It is strong enough to insure that most prime-rich equations of

'Gardner, Martin, "Mathematical Recreations," Scientific American, Vol. 210,
No. 3, Mar 1964, pp. 120-127.
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TABLE 1. DIAGONALLY BUILT ARRAY (MODIFIED TO RECTANGULAR FORM)

H.., OF ODD INTEGERS ONLY (PRIMES ARE UNDERLINED)

IC X - x + C

c=l 3 5 7 9 11 13 15 17 19 21

xl=l 2 3 4 5 6 7 8 9 10 1i

r=l 1 5 11 19 29 41 55 71 89 109 131

r=3 3 9 17 27 39 53 69 87 107 129 153

5 7 15 25 37 51 67 85 105 127 151 177

7 15 23 35 49 65 83 103 125 149 175 203

9 21 33 47 63 81 101 123 147 173 201 231

11 31 45 61 79 99 121 145 171 199 229 261

13 43 59 77 97 119 143 169 197 227 259 293

15 57 75 95 117 141 167 195 225 257 291 327

17 73 93 115 139 165 193 223 255 289 325 363

19 91 113 137 163 191 221 253 287 323 361 401

21 Ii 135 161 189 219 251 285 321 359 399 441

23 133 159 187 217 249 283 319 357 397 439 483

25 157 185 215 247 281 317 355 395 437 481 527

27 183 213 245 279 315 353 393 435 479 525 573

29 211 243 277 313 351 391 433 477 523 571 621

31 241 275 3i-1 349 389 431 475 521 56-9 619 671

33 273 309 347 387 429 473 519 567 617 669 723

1% 35 307 345 385 427 471 517 565 615 667 721 777

37 343 383 425 469 515 563 613 665 719 775 833

39 381 423 467 513 561 61-1 663 717 773 831 891

V 41 421 465 511 559 609 661 715 771 829 889 951

43 463 509 557 607 659 713 769 827 887 949 1013

45 507 555 605 657 711- 767 825 885 947 1011 1077

* 47 553 603 655 709 765 823 883 945 1009 1075 1143

* 49 601 653 707 763 821 881 943 1007 1073 1141 1211

* 51 651 705 761 819 87-9 941 1005 1071 1139 1209 1281

53 703 759 817 877 939 1003 1069 1137 1207 1279 1353

55 757 815 875 937 1001 1067 1135 1205 1277 1351 1427

57 813 873 935 999 1065 1133 1203 1275 1349 1425 1503

59 871 933 997 1063 1131 1201 1273 1347 1423 1501 1581

61 931 995 1061 1129 1199 1271 1345 1421 1499 1579 1661

63 993 1059 112-7 1197 1269 1343 1419 1497 1577 1659 1743

65 1057 1125 1195 1267 1341 1417 1495 1575 1657 1741 1827

67 1123 1193 1265 1339 1415 1493 1573 1655 1739 1825 1913

69 1191 1263 1337 1413 1491 1571 1653 1737 1823 1911 2001

71 1261 1335 1411 1489 1569 1651 1735 1821 1909 1999 2091

, 73 1333 1409 1487 1567 1649 1733 1819 1907 1997 2089 2183

75 1407 1485 1565 1647 1731 1817 1905 1995 2087 2181 2277

77 1483 1563 1645 1729 1815 1903 1993 2085 2179 2275 2373

79 1561 1643 1727 1813 1901 1991 2083 2177 2273 2371 2471

2
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ii TABLE 1. (Cant.)

C=3 25 27 29 31 33 35 37 39 41 43

x=2 13 14 15 16 17 18 19 20 21 22

1.55 181 209 239 271 305 341 379 419 461 505

179 207 237 i-9 33 339 377 41Z59 503 549

205 235 267 301 337 375 415 457 501 547 595

233 265 299 335 373 413 455 499 545 593 643

263 297 333 371 411 453 497 543 591 641 69-3

295 331 369 409 451 495 541 589 639 691 745

*329 367 407 449 493 539 587 637 689 743 799

365 405 447 491 537 585 635 687 741 797 855

403 445 489 535 583 633 685 739 795 853 913

443 487 533 581 631 683 737 793 851 911 973

485 531 579 629 681 735 791 849 909 971 1035

529 577 627 679 733 789 847 907 969 1033 1099

575 625 677 731 787 845 905 967 1031 1097 1165

*623 675 729 785 843 903 965 1029 1095 1163 1233

673 727 783 841 901 963 1027 1093 1161 1231 1303

725 781 839 899 961 1025 1091 1159 1229 1301 1375

779 837 897 959 1023 1089 1157 1227 1299 1373 1449

*835 895 957 1021 1087 1155 1225 1297 1371 1447 1525

893 955 1019 1085 1153 1223 1295 1369 1445 1523 1603

953 1017 1083 1151 1221 1293 1367 1443 1521 1601 1683

*1015 1081 1149 1219 1291 1365 1441 1519 1599 1681 1765

1079 1147 1217 1289 1363 1439 1517 1597 1679 1763 1849

1145 1215 1287 1361 1437 1515 1595 1677 1761 1847 1935

1213 1285 1359 1435 1513 1593 1675 1759 1845 1933 2023

1283 1357 1433 1511 1591 1673 1757 1843 1931 2021 2113

1355 1431 1509 1589 1671 1755 1841 1929 2019 2111 2205

*1429 1507 1587 1669 1753 1839 1927 2017 2109 2203 2299

1505 1585 1667 1751 1837 1925 2015 2107 2201 2297 2395

1583 1665 1749 1835 1923 2013 2105 2199 2295 2393 2493

1663 1747 1833 1921 2011 2103 2197 2293 2391 2491 2593

1745 1831 1919 2009 2101 2195 2291 2389 2489 2591 2695

1829 1917 2007 2099 2193 2289 2387 2487 2589 2693 2799

1915 2005 2097 2191 2287 2385 2485 2587 2691 2797 2905

2003 2095 2189 2285 2383 2483 2585 2689 2795 2903 3013

2093 2187 2283 2381 2481 2583 2687 2793 2901 3011 3123

2185 2281 2379 2479 2581 2685 2791 2899 3009 3121 3235

2279 2377 2477 2579 2683 2789 2897 3007 3119 3233 3349

2375 2 475 25-77 2f681 2787 2895 3005 3117 3231 3347 3465

2473 2575 2679 2785 2893 3003 3115 3229 3345 3463 3583

*2573 2677 2783 2891 3001 3113 3227 3343 3461 3581 3703

3
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TABLE 2. ARRAY OF TABLE 1 MODIFIED SO THAT ALL EQUATIONS HAVE

xl=l, i.e., x=1, 2 ,3 ..... ,40 TO ENABLE MORE ACCURATE

COMPARISONS OF DENSITIES OF PRIMES TO BE MADE
L

c=...11 13 15 17 .... 31 33 35 37 39 41

xl*

tl 13 15 17 31 33 35 37 39 41

1 --5 17 19 33 35 37 39 41 43

-7 19 2- 23 37 39 41 43 45 47

23 -25 27 29 43 45 47 4-9 51 53

3T 33 35 37 51 53 55 57 59 61

41 43 45 47 61 63 65 67 69 71

5-3 -5 57 59 73 75 77 79 81 83-

67 69 71 73 87 89 91 93 95 9T

8-3 85 87 89 103 105 107 109 111 113

101 103 105 107 121 123 125 127 129 131

121 123 125 127 141 143 145 147 149 151

143 145 147 149 163 165 167 169 171 173

167 169 171 173 187 189 191 193 195 197

193 195 197 199 213 215 217 219 221 223

221 223 22-5 227 241 243 245 247 249 251

251 253 255 257 271 273 275 277 279 281

283 285 287 289 303 305 307 309 311 313

317 319 321 323 337 339 341 343 345 347

353 355 357 359 373 375 377 379 381 383

391 393 395 397 411 413 415 417 419 421

431 433 435 437 451 453 455 457 459 461

473 475 477 479 493 495 497 499 501 503

517 519 521 523 537 539 541 543 545 547

563 565 567 569 583 585 587 589 591 593

611 613 615 617 631 633 635 637 639 641

661 663 665 667 681 683 685 687 689 691

713 715 717 719 733 735 737 739 741 743

767 769 771 773 787 789 791 793 795 797

823 825 827 829 843 845 847 849 851 853

881 883 885 887 901 903 905 907 909 911
941 943 945 947 961 963 965 967 969 971

1003 1005 1007 1009 1023 1025 1027 1029 1031 1033

1067 1069 1071 1073 1087 1089 1091 1093 1095 1097

1133 1135 1137 1139 1153 1155 115-7 1159 1161 1163

1201 1203 1205 1207 1221 1223 1225 1227 1229 1231

1271 1273 1275 1277 1291 1293 1295 1297 1299 1301

1343 1345 134? 1349 1363 1365 1367 1369 1371 1373

1417 1419 1421 1423 1437 1439 1441 1443 1445 1447

1493 1495 1497 1499 1513 1515 1517 1519 1521 1523

1571 1573 1575 1577 1591 1593 1595 1597 1599 1601

* xI  1 for all columns

4
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* the form x2-x+c can be found by its use (see Appendix A, Para. No. 4). The
correlation is that a column tends to be rich in primes if c itself is prime and
xI is BO(mod 3). Richness was defined as having a density of >50 percent
where the density is the ratio of primes in a column divided by the number of
integers in that column. In the array of Table 2, the denominator was fixed at
40 which gives for c=41 (i.e., x2-x+41) a density of 100 percent. Other prime-
rich equations found in the original 75x40 array were those of c=11,17,59,67.
In addition, by using the criteria c=prime, xl=0(mod 3) and not extending

- the columns of the original array, the following prime-rich equations were
found: c=101,10 7,137,227,251,257,311,347,353,359,419,431, etc. For brevity,
the density for most of these was limited to -60 percent (seven others did have
a density >50 percent). There were equations which did not meet the criteria
whose densities were >50 percent. They are: c=67,95, and 367 (see Table 3).

" Of these only c=95 is not prime (although xi=48 is =O(mod 3). In contrast,
*i the other two values of c are prime but the corresponding values of xI are not

=0(mod 3). It is very likely that a number of similar examples will be
* found. It would be more feasible to look for them, if desired, by means of a

suitable computer program rather than by the method that was used (hand
*i calculator).

The total number of prime-Lwch equations found by this method was less than
the total number of equations which met the criteria c=prime, xl=O(mod 3).
This is a weakness of the correlation. Of the 75 columns originally studied 34
had c=prime. Of these, 18 fulfilled the criteria. The ratio of prime-rich
equations to those meeting the criterion is only about 0.44, i.e., 8/18.
Nevertheless, the use of the criterion does seem to offer a viable method of
looking for prime-rich equations.

PRIMITIVE CELL ARRAYS DERIVED FROM SPECIAL ARRAY

There is another method derived from a study of the new array which might
also prove useful for searching for them. This will be described below. To

"* start with, Tables 4, 5, and 6 illustrate another interesting characteristic
. which can be inferred from the array of Table I. If we look for each integer in
* the array for which I0(mod 3) and replace it with the value 3 and leave all

other -teger locations blank, we can construct Table 4. Similarly, we get
Table 5 for those integers =O(mod 7) and Table 6 for the integers
=O(mod 11). A table for the divisor 5 is not included but can be inferred
from Table 7. The conjecture can be made, and is, that similar tables for all
primes can be constructed in principle. It is apparent from Tables 4, 5, and 6
that there are repeating patterns of 3's, 7's, and 1l's in the respective
tables. One can borrow, with modifications, the concept of a primitive cell
from Crystallography. There the smallest unit cell (meeting certain criteria
which are not pertinent here) is called a primitive cell and the pattern of the
whole crystal can be represented by it. Similarly one can build up each array
of Tables 4, 5, and 6 by appropriate translations of the "primitive" cell. The
concept of a basic pattern of a roll of wallpaper repeated indefinitely in two
dimensions is also a useful analogy. Here the primitive cell is defined as that
"area" of the array which is common to the first n rows and the first n columns

5
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TABLE 3. THOSE EQUATIONS, x2 - x + c, MEETING THE CRITERIA C IS

PRIME AND x1=O(mod 3) WHOSE DENSITIES OF PRIMES EXCEED

50 PERCENT (WITH THREE EXCEPTIONS INCLUDED)

Integers

Is Is Criteria in column

c prime x0 O(mod 3) satisfied R,%* =O(mod 5)

11 Yes 6 Yes Yes 62.5 None

17 " 9 " 77.5 None

41 " 21 " 00.0 None

59 " 30 " " 60.0 20%

67 " 34 No No 62.5 None

95 No 48 Yes No 50.0 37.5%

101 Yes 51 Yes 75.0 None

107 " 54 " " 72.5 None

137 " 69 " " 65.0 None

227 114 " " 72.5 None

251 " 126 65.0 None

257 129 " 57.5 None

311 156 65.0 None

* 347 174 " 65.0 None

353 177 " 57.5 40%

359 " 180 "" 57.5 20%

367 " 184 No No 62.5 None

- 389 " 195 Yes Yes 65.0 20%

419 210 "" 55.0 20%

431 216 62.5 None

557 279 65.0 None

* 587 " 294 72.5 None

* R - No. of primes in a column.

No. of integers

These ratios are based on letting xl-- (i.e., x = 1,2,3 ..... ,40) as in Table 2.

6
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TABLE 7. ANALYSIS WHICH SHOWS HOW THE PRIMITIVE CELL OF 5 IS REPEATED

THROUGHOUT THE UNLIMITED ARRAY WHICH RESULTS FROM THE WAY IN

WHICH INTEGERS IN TABLE 1 ARE FORMED FROM THE EQUATIONS

x2 -x+c, c=1,3,5 ..... ,2n-l,....

+c=l* =3 =5 =7 =9 =11 =13 =15 =17 =19

x(x-l)* xl=l =2 =3 =4 =5 =6 =7 =8 =9 =10

1(0)=0 1 5 1 9 9 1 5 1 9 9

ft. 2(1)=2 3 9 7 7 9 3 9 7 7 9

3(2)=6 7 5 5 7 1 7 5 5 7 1

4(3)=12 3 3 5 9 5 3 3 5 9 5

5(4)=20 1 3 7 3 1 1 3 7 3 1

6(5)=30 1 5 1 9 9 1 5 1 9 9

7(6)=42 3 9 7 7 9 3 9 7 7 9

8(7)=56 7 5 5 7 1 7 5 5 7 1

9(8)=72 3 3 5 9 5 3 3 5 9 5

10(9)=90 1 3 7 3 1 1 3 7 3 1

l(lO)=1i0 1 5 1 9 9 1 5 1 9 9

12(11)=132 3 9 7 7 9 3 9 7 7 9

13(12)=156 7 5 5 7 1 7 5 5 7 1

14(13)=182 3 3 5 9 5 3 3 5 9 5

15(14)-210 1 3 7 3 1 1 3 7 3 1

*Note: Only digits parts of all integers are retained. The primitive cell for

5 is outlined in the box. 1 is added to 0,2,6,2,0 for the 1st column;

3 is added to 2,6,2,0,0,... for the 2nd; 5 is added to 6,2,0,0,2,... for

the 3rd, etc.

.4 "10
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for each c (and r) and taking c=r. For c=3, it is the area containing the nine
integers 1,5,11; 3,9,17; and 7,15,25. For c=5, it is that area common to the
integers in the area "bounded" by c=1,3,5,7,9 and r=1,3,5,7,9. It is assumed
that each primitive cell can be "translated" endlessly in the c and r directions.

CHARACTERISTICS OF PRIMITIVE CELL ARRAYS

A little study of the primitive cells for 3,5,7,11, and 17 resulted in the
observation of several properties of the primitive cell type arrays. These are
summarized below. Only prime values of c need be considered as composite values
of c are multiples of the prime values; but the properties apply to all c's and
r 's whether prime or composite.

1. The "area" of each primitive cell is c'l (or [2n-112), e.g., for
c=7, it is 49.

2. The number of divisors p in a primitive cell is p (more generally c
divisors for each c), e.g., the number of divisors for c=7 is 7, for c=15, it

* is 15.

3. In each primitive cell there are "empty" columns (and empty rows).
That is there are rows and columns which contain no integers which are
=-O(mod p) for that value of p.

4. The ratio of occupied spaces to total spaces in a primitive cell starts
* at 3/9=1/3 for cp3 and approaches zero asymptotically for p (or c or n) very

large.

5. The ratio of empty columns to the total number of columns in a
primitive cell is Uc-0/2 and approaches 0.5 for c very large (this applies to
rows also).

* 6. There is a characteristic pattern at the center of each primitive cell
- consisting of three adjacent positions occupied by divisors which is shaped like

an L (rotated 1800 in the plane of the Table). See page 13.

7. It does not appear unreasonable to assume that each primitive cell
repeats endlessly throughout the infinite array.

8. Structure in the way primes are distributed also occurs in the rows and
is about as pronounced as that which appears in the columns.

a S
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PROOFS INDICATING UNLIMITED REPETITION OF PRIMITIVE CELLS

The question naturally arises as to whether, from what is observed in

Tables 4, 5, and 6, the primitive cells actually do repeat endlessly. The
question is not completely answered here but a number of proofs are given that
indicate that they do. For example, it is shown immediately below, with the aid
of Table 7, that it is true for the primitive cell of 5. We can break up a

typical equation for a column into two parts, x(x-l) and c. If we substitute
x=1,2,3 ...... in the first part, we get l(O),2(l),3(2),4(3) ...... or
0,2,6,12,20,30,42,56 ...... If we retain only the digits parts of these numbers,
the result is 0,2,6,2,0,0,2,6,2,0 ........ a pattern of five digits which repeats
ondlessly. If we now add c=l to each of these (again retaining only the digits
parts) we get 1,3,7,3,1,1,3,7,3,1,... another endlessly repeating sequence.
Adding c=3 to the repeating pattern 0,2,6,2,0, gives a repeating pattern for the
second column, namely 3,5,9,5,3, and similar repeating patterns occur for

* c=5,7,9,.... as shown in Table 7. But the five repeating sequences 1,3,7,3,1;
3,5,9,5,3 ...... of the first five columns (within the first five rows) repeat
for every subsequent set of five columns. It is apparent that the patterns for
these first five columns repeat without end across the first five rows and these
repeat endlessly down all columns. Only five of the spaces in the primitive
cell have 5 as divisors. Therefore, the primitive cell for 5 does repeat
indefinitely in the c and r directions.

Equations have been developed to prove that the primitive cell for the
prime divisor 3 is repeated endlessly throughout the array of Table 1. These
are a special case of the most general equations which are:*

1. [(2pn+i) + (pk+m)12 - [pk+m] m=-(p-l)/2

2. [(2pn+i)+pk]2-pk.. ................................

3. ~ ~ ~ M [ipnn + p~) -[km, m=(p-l)/2

lm, i, n, and k vary, respectively, as follows:

°m =-(p-l)/2,...-2,-l,0,1,2,...+(p-l)/2; and i=1,3,5,...2p-1; and n=O, k=0,

1,2,3,...; n=l, k=0,l,2,...(or k=-l,0,1,2,...); n=2, k=-l,0,1,...(or k=-2,-l,
-. 0,1,2,... or whatever initial value of k is applicable).

Now for p=3 , we find that m varies as -(3-)/2,0,+(3-)/2 or -1,0,1 and the
equations reduce to the following three:

4. [(6n+i) + (3k-l)1 2 - [3k-li

5. [(6n+i) + 3k)] 2-3k

6. [(6n+i) + (3k+l)] 2-[3k+l]

*See Appendix B for derivation.

o 12
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For c=3, 2 p-1= 2 (3 )-1=5 which makes i=l,3,5where i7l applies to the first column
* in the array and i=3,5 applies to the 2nd and 3rd columns respectively. For n=0

these equations apply to the first three columns no matter how far extended.
For n=1,2,3 ,. .. . they apply to the second set of three columns, the third set of
three, the fourth set of three .... respectively, and for all subsequent sets of

three for values n>4. Equations 4, 5, and 6, as carried out for five columns
. and nine rows, and modified to show that they are or are not =O(mod 3), are shown
" in Table 8 (actual substitutions for explicit values of k and n are indicated

*but not carried out). The primitive cell for the divisor 3 is shown in the
heavily outlined part (upper left hand corner) of the table. Those integers in

the primitive cell which are common to the intersections of column 1 and row 2,

i.e., clr2 and also c2r2 and c2r3 are equivalent to 0(mod 3). This, of course,
holds true for the other five repeated sets of cells or rotated "Ls" of the
primitive cell; for example clrS, c2r5, and c2r6. Thus 18 of the 45 locations

*" shown in Table 8 are =O(mod 3). The remaining 27 locations yield integers
which are not =O(mod 3). This is true for all translations of the primitive

* cell. (An analysis similar to that for the columns was done for the rows but is
not included here as it would be somewhat redundant).

It should be evident that the equation for p=7, derived from the basic set
- (Equations I through 3) would require 7 equations for each column or 49

equations for the primitive cell of 7; for p=41, 1681 equations would be

necessary and for c=2n-I the number required is (2n-l) 2 to show that its

primitive cell repeats indefinitely. This entails a prohibitive number of
equations for n very large.

One additional characteristic of the primitive cell noted previously should

be clarified. It is the existence of the three adjacent divisors appearing in

the shape of an L (rotated 1800), at the center of each primitive cell the
integers of which are zO(mod c) for every c. This is proved as follows: In
x 2-x+c and x 2+x-r let c=r and let x=c. Then c 2-c+c (=r2+r-r) = Ic=Ir=O (mod c,r).
This, for all values of c, defines what can be called the main diagonal of the

array of Table 1. This diagonal forms a bound on the maximum number of
successive prime integers which can exist and these occur for the values x=1 to
x=c-l. The next integer below that for which x=c is x=c+l. Substituting this
in x2 -x+c gives I = (c+l)2 -(c+l)+c=c(c+2)=O(mod c). The integer to the
left of x=c(=r) is r-l and substituting again for x, (r-l)2+(r-l)-r=r(r-2)=O

(mod r) and since r=c it is =O(mod c). QED

Not only does the "L" of divisors exist in each primitive cell but a

parabola exists for which the "L" is the apex and pairs of points symmetrically
placed with respect to the curve's axis and at increasingly greater distances
from the "L" or apex, make up the balance of the parabola. For the primitive

. cells of 3 and 5, only the apices are contained within their respective cells;

K but some of the divisors of diagonally contiguous cells (diagonal translations
lie of the primitive cell) serve as additional points for the curve. Table 6

includes a parabola drawn through a typical cell and adjacent ones. This cell
contains five points of the parabola. As c-p increases, more pairs of points

are contained in a primitive cell (and in its translations). If parabolas are
drawn through every apex (apex of a primitive cell and every translation of it)
the individual divisors throughout the array serve as common points for
2 ,3 ,4 ,...,n parabolas. Typical equations which define the first pair of points

13
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located next to Aihe apex of a given parabola are cl(cl+4) and c1 (cl-4).

Their locations are given by the integers located at Z and r,

respectively. The next pair of points is given by ci(ci+6) and ci(ci-6)
which are located at c4 r7 and c 7 r4 , respectively. For these pairs of
points, cl is the column which contains the apex of L of the parabola; and
columns to the left of it are numbered c2 ,c3 ,c4 , .... ; r I is the row in
which the apex is located and rows below it are r 2 ,r3 ,r4 ,... . For

example, c4 r7 indicates the point on the curve (i.e., the divisor of the
integer) at the intersection of column 4 and row 7 where cI is the first
column. The general equations for locating points on a parabola are

(ci+[2n+2]) and (cl-[2n+2]), n=1,2,3,.... and the locations are,
respectively, jrj' and 7j; j'(n2-n+2)/2 but n=1,2,3,.... for j and
n=2,3,4,.... for j

The equation for the parabola shown superposed in Table 6 has the form
x2 +x+y2 +y-2xy. Its origin is at the exact center of the primitive cell.

The sets of coordinates used were x,y=(O,O), (-1,0), (0,-1), (-3,-l), (-1,-3),
(-3,-6), and (-6,-3). Other parabolas constructed (but not shown) were for
p=3,5,11 ..... ,23. The same coordinates were used for each of them. It is
reasonable to assume that identical parabolas can be constructed for all

primitive cells and for all translations of same.

There are five known columns for which the maximum number of unbroken

primes occur. The one best known is that shown in column 21, x 2-x+41
(Tables I and 2). The other four, the first two of which can be considered
trivial, are x2-x+3, x2 -x+5, x2-x+ll, and x2 -x+17.

ANOTHER PRIME NUMBER SIEVE

The additional possible method, alluded to earlier, for searching for

prime-rich equations is based on setting up tables similar to those of Tables 1,
4, 5, and 6. This can be described as follows: Imagine a very large array like

that of Table 1. Next imagine a large array, based on Table 4, which is
transparent and has the primitive cell for 3 repeated indefinitely in both the

column and row directions. This "Table 2" can overlay "Table I". Additional
similar arrays for the primitive cells of 5,7,11,13,....p (p=prime) can be

imagined to successively overlay imaginary Tables I and 2. This set of an
original array plus all repeating primitive cell overlays forms a new type of
sieve for finding prime numbers. What can and should be given further study is
where coincidences of "empty" columns occur (columns for each divisor p in which
no divisors occur) with all the various overlays in place on the imaginary Table
I-type array. It can be seen from Table 1 that there is one outstanding

coincidence of "empty" columns--that for c=41. Here the empty columns for the
first 11 primes (3,5,7, .... ,37) occur at the 21st column. The first composite
number which breaks the string of unbroken primes is, of course, c2 -41 2-1681.
A computer program to implement, in a practical way, the imagined Table 1-type
array with overlays, within practical limits, should not be too difficult to set
up to look for any prime-rich equations which may exist other than those found
by Euler et al.
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There are undoubtedly a number of other interesting characteristics of the
new array not described in this article that will be found. It is hoped that
this article will spur further searches in this area.

CONCLUSIONS

A simple type of diagonal array of all the positive odd integers can be
made such that all its columns are described by the equations x 2-x+c (and its
rows by x2 +x-r) where c=1,3,5 ..... ,2n-l ..... (r=1,3,5 .....

A related array can be derived from the above array for each prime value,
p, of c such that the only elements in this array consist of the divisors p
where p has been substituted for each I which is 0(mod p) and all other
integers in the first array notEO(mod p) are left blank. All the divisors of
the derived array occur in a fixed structure which consists of what is called a
"primitive" cell and all its translations. This fixed structure can also be
described as that of a set of parabolas each of the form x2+x+y2+y-2xy
(origin x=y=O at the apex of the parabola) which make angles of 450 with the "c"

and "r" directions of the array. All points in this array are contained in the
parabolas and, in general, most and perhaps all points are parts of 2,3,4,....

parabolas.

Prime-rich equations of the type Euler discovered (e.g., x2-x+41) tend to
occur for the criteria c=prime, xl=0(mod 3) where xI is the first value of
x for each column (x2 -x+c). This is because a column for which c is composite
tends to have a larger number of divisors than one which has c=prime. Moreover,
where xl O(mod 3) these columns are ones which contain no integers =0(mod 3).
Because of the nature of the array's structure, all other columns where x I is
not E 0(mod 3) have 3's as divisors.

A set of arrays consisting of the primitive cells and their translations
superposed on the diagonal array of all the odd integers forms another sieve for
finding prime numbers.

The picture of the new array and its interrelationships with its

accompanying primitive cell arrays show how and why there is a non-random
structure in the way prime numbers occur in the number system.

16.



NSWC TR 85-120

REFERENCES

1. Gardner, Martin, "Mathematical Recreations," Scientific American,

Vol. 210, No. 3, Mar 1964, pp. 120-127.

A.-

17/18

I li



NSWC TR 85-120

APPENDIX A

ADDITIONAL OBSERVATIONS ON THE STRUCTURE OF THE
SPECIAL DIAGONAL ARRAY AND PRIMITIVE CELL ARRAYS

A few other observations not pointed out above are added here.

1. The "L" shaped triad of divisors which is at the center of each

primitive cell overlaps the "L" of the next adjacent primitive cell. For
example in Table 1,_for the primitive cell of 3, the integers are 3,9,15 (i.e.,
at locations clr2, c2r2, and c2r3).* These overlap the integers for the
primitive cell of 5, namely 15, 25, 35 (i.e., locations c2r3, c3r3, and c3r4.*
Note also that 3 and 5 are divisors of 15. This is why there are always two

composite numbers following columns with unbroken strings of primes such as for
c=3, c=5, c=ll, c=17, and c=41.

2. In conjunction with the above, it should be noted that c=41 and c=43

are twin primes. Since the primitive cell for 3 and all translations of it have
two columns with periodic occurrences of the divisor 3 and the third column with

no 3's, it is evident that the column for c=41 is empty of the divisor 3 (and,
as was pointed out earlier, of the divisors 5,7,11 ..... ,37). Compare Tables 4
and I. It is also easily seen that the column next to c=41, i.e., c=43 must be
a column which has recurring 3's as divisors. This is true of a number of other

such pairs having unbroken strings of primes for xi=1,2,3 ...... , c-l, e.g.,
3,5,; 5,7; 11,13 and 17,19. The first two of these pairs are trivial for the
unbroken strings of primes are very short. The first string has only the two

priwes 3 and 5, the second has four primes 5, 7, 11, and 17. Thus the
probabilities are quite high that a prime-rich column will be followed by a

prime-poor one.

3. Though it is not immediately obvious why values of c which are prime
are more likely to be prime-rich, it is easier to see why those columns having
composite values of c are not, for example c=15. As can be seen by looking at
Table I, this column has recurring integer couples =O(mod 5) such as 105,125;
225,255; .... In addition, it contains recurring integers which are O(mod 3),

e.g., 87,105. Of course, some integers are divisible by both 3 and 5. In any

event, many such columns are prime-poor.

c=15 represents one member of a subset of the set of all composite values
of c. This subset is that for which c-15,25,35 ...... i.e. lOn+5, n=1,2,3 ......
The column for c=15 has a density of primes (for 40 rows) of 10%. The density
of primes in any member of this subset can be at most 60% but is usually is

considerably less because of other divisors. A prominent member of this set isthat of c95 (x2-x+95) which has a density of 50% (see Table 3).

*Note: Zfr2 indicates the integer at the intersection of the first column and

the second row; c2r3 the integer at column 2 row 3 etc.

A-1
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A more striking subset is that for which c=9,15,21,....i.e. 6n+3, n=1,2,3,.

.... where the maximum density of primes cannot exceed 33%. All subsets of
composite values of c are described by p(2n+l), n=1,2,3,....; p is prime.

4. Now it can be seen why a correlation exists between prime-rich
equations (columns) and the two criteria c is prime and xl=0(mod 3). The
columns of Table I can be divided into three sets, those for which the first

value, xl, to be substituted in the equation is 3n, n=l,2,3,.... and those for
which xi=3n+l and 3n+2, n=0,1,2,3 ..... .Of the three sets, only xl= 3 n is
equivalent to 0(mod 3) and that for all n. If c is prime for any one of the
columns for which xl=3n, that column contains no integers divisible by 3 and
thus is more likely to be prime-rich than if c is prime for other columns of the
remaining two sets; for which it is obvious from Tables I and 4 that every
column of these sets contains integers =0(mod 3). Of course, one other
consideration determines how prime-rich a column which fulfills the criteria can
be, and that is what other divisors apply to the integers of that column, e.g.,
the third column, x 2-x+5 where 5 is prime and xl=3=O(mod 3).

5. If the sets of equations x 2-x+c=y and x 2+x -r=y are plotted
graphically they form two sets of nested parabolas. The ones involving c have a
common axis x=1/2 with apices at (x=1/2; y=3/4, 2 3/4 3 3/4 ..... ). The ones
involving r have a common axis of symmetry x=-1/2 and apices at (x=-1/2; y=-l
1/4 -3 3/4, -5 3/4 ...... ). The left branches of both sets do not intersect;
however the right branches do and the points at which they intersect make up the
integral values of Table 1. Certain sets of these points form subsets of the
totality of points (intersections). These sets are made up of those integers
which are =0(mod c)- [or (mod r)]. Each of these subsets c=1,3,5 ...... ,2n-l
if plotted as an array such as those of Tables 4, 5 and 6 can be described as
sets of parabolas (physically traceable in the tables) with apices in the
centers of the primitive cell and all its translations (as described on page 13).
Each parabola can be represented by an equation of the form x2+x+y 2 +y-2xy
where the origin has been chosen to be x=y=0; the axis of each parabola is on a
line, x=y, which is perpendicular to the main diagonal (see pages 9 and 15) of
the array of Table 1.

One can consider the plotted points at all intersections as being
transformed from their positions as points on intersecting parabolas into the
linear forms (i.e., columns) of Table I. The subsets of those points (those
which are =O(mod c)) are transformed from what - in a preliminary analysis -

appear to be linear arrays of points on the plotted graphs of intersecting
parabolas into parabolic curve arrays of points on the primitive cell array type

of table such as those of Tables 4, 5 and 6.

A-2
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APPENDIX B

DERIVATION OF EQUATIONS SHOWING WHY PRIMITIVE

CELLS TRANSLATE INDEFINITELY

The derivation of the equations to show that primitive cells translate

indefinitely in the c and r directions of the array in Table I is as follows:

Substituting c for x in Ic=x2 -x+c gives c2-c+c=O(mod c). The nth integer below

c is obtained by substituting c+n for %, i.e., Ic+n-(c+n)2-(c+n)+c=(c+n)
2-n.

Next, let limiting expressions pk-m and pk+m replace n where, (1) p is the

divisor sought, (2) m=(p-l)/2, and (3) c can be equal to p but will take on

other non-prime values. In order to show this let c=2pn+i, where i for each

primitive cell takes on values 1,3,5,..., p ..... ,2p-1 and also where m takes on

the values -(p-l)/2 .... 2,-l,0,l,2,....,+(p-l)/2. Then the most general

equations take the form, i.e., [(2pn+i) + (pk-m)12 (pk-m), etc.

B-I/B-2
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To all holders of NSWC TR 85-120 Chage I
Title: Relationships Between Prime-Rich Euler Type Equations 6 Sep 1985

and a Triangular Array of the Odd Integers
N.1 page (s)

This publication is changed as follows:
Add the following information to page 15, after the first paragraph:

A better description of the "parabolic" arrangement of the integers divisible

by p, referred to on this page, is given by the following equation:

7. I=(n+m)2px- [(fn+mp)2 + (n-fm+lfp]. Two initial values of x are given by:

8. x=p(n+m), p(n+m)+l which are for, respectively, the apex of the parabola

(of the rotated L or Triad of divisors mentioned earlier) and the next integer

horizontally adjacent to it. For n=1 mffO (any value of p) 7. and 8. describe the

parabolas for the primitive cells. But for n-1,2,3 ..... for each value of m,

m=1,2,3 ..... they describe all translations of each primitive cell. The

equation 7. is a generalization of the Diophantine equations such as I-6x-9,

(x=2,3,4, & 5); I=12x-33, (x=5, 6, 7, etc.) which describe the straight lines

formed by the intersections of the intersecting sets of parabolas mentioned in

5. of page A-2, Apper"'ix A.

Note that 7. is linear in x as m= 2p(n+m) and b is equal to the negative

term. Also p can be factored out of 7; therefore, I=O (mod p) for all

combinations of values of m and n.

Equations 7 and 8 are a step closer to a proof that the configuration of

integers in every cell repeats without limit in the "c" and "r" directions.
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